method detection limits (MDLs), no further evaluation of the permit limits is required to evaluate the compliance level. Based upon the information provided in Volumes I and II and the process described in this report, Amoco does not anticipate changes to the quality of the Outfall 001 treated effluent nor is it seeking to increase the amount of constituents in the effluent.

TABLE 9-1. SUMMARY OF EXISTING MONTHLY AVERAGE PERMIT LIMITS, HISTORICAL PERFORMANCE, AND BPT/BAT/BCT LIMITS (d)

PARAMETER	CONC. UNITS	EXISTING PERMIT LIMITS (a)		HISTORICAL PERFORMANCE (b)		BPT/BAT/BCT LIMITS (c)	
		CONC.	LOAD (lb/d)	CONC.	LOAD (lb/d)	CONC.	LOAD (lb/d)
METALS	-			·		•	
Total Chromium Hex. Chromium	mg/L mg/L	Report Report	23.9 2.01	0.015 0.003	2.4 0.58		92.9 6.39
CONVENTIONALS						!	
Ammonia as N. Phenolics (4AAP) TBOD5 TSS COD Oil & Grease Sulfide Fecal Coliform	mg/L µg/L mg/L mg/L mg/L mg/L mg/L col./100mL	Report Report Report Report Report Report 200	1,030 20.33 4,161 3,646 30,323 1,368 23.1	0.6 0.016 5.8 24.6 67.2 3.9 0.068 (d)	68.3 3.11 721 2,059 7,973 463 6.7		2,206 37.7 5,283 4,645 38,320 1,742 30.8

NOTES

- (a) Permit effective from April 1, 1990 to February 28, 1995.
- (b) Maximum value from the past 3 years of Discharge Monitoring Report data.
- (c) In accordance with 40 CFR Part 419 Subpart D.
- (d) Shading indicates not applicable.
- BPT Best Practicable Control Technology Currently Available
- BAT Best Available Technology Economically Achievable
- BCT Best Conventional Pollutant Control Technology

TABLE 9-2. SUMMARY OF EXISTING DAILY MAXIMUM PERMIT LIMITS, HISTORICAL PERFORMANCE, AND BPT/BAT/BCT PERMIT LIMITS (f)

PARAMETER	CONC. EXISTING LIMITS		PERMIT (a)		DRICAL MANCE (b)	BPT/BAT/BCT PERMIT LIMITS (c)	
	-	CONC.	LOAD (lb/d)	CONC.	LOAD (lb/d)	CONC.	LOAD (ib/d)
METALS							
Total Chromium Hex. Chromium	μg/L μg/L	Report Report	68.53 4.48	0.03 0.007	5.3 1.23		158.5 13.93
CONVENTIONALS							,
Ammonia as N Chlorine (T.R.) Phenolics (4AAP) TBOD5 TSS COD Oil & Grease	mg/L mg/L μg/L mg/L mg/L mg/L mg/L	Report 0.05 Report Report Report Report	2,060 73.01 8,164 5,694 58,427 2,600	13.0 (d) 0.09 29 71 135 12.8	1,446 17.9 3,580 4,904 (e) 18,515 1,594		4,819 77.2 10,393 7,258 73,736 3,309
Sulfide Fecal Coliform pH	mg/L col./100ml s.u.	Report 400 6.5 - 9.0	51.4	0.12 (d) 6.7 - 8.1	14.3		68.5

NOTES

- (a) Permit effective from April 1, 1990 to February 28, 1995.
- (b) Maximum value for the past 3 years of Discharge Monitoring Report data.
- (c) In accordance with 40 CFR Part 419 Subpart D.
- (d) No data collected since sanitary wastewater not discharged to WWTP.
- (e) Highest value (10,553 lbs/day on 08/31/93) is not included in the data set since it occurred due to successive rainfall events related to the extreme midwest flooding of 1993.
- (f) Shading indicates not applicable.
- BPT Best Practicable Control Technology Currently Available
- BAT Best Available Technology Economically Achievable
- BCT Best Conventional Pollutant Control Technology

TABLE 9-3. SUMMARY OF PROPOSED MONTHLY AVERAGE PERMIT LIMITS (g)

PARAMETER	CONC. UNITS				PERMIT ITS (b)	PROPOSED PERMIT LIMIT (c)	
		CONC.	LOAD (lb/d)	CONC.	LOAD (lb/d)	CONC.	LOAD (lb/d)
METALS							·
Total Chromium	mg/L	Report	23.9	Not Needed (d)	Not Needed (d)	Report	23.9
Hex. Chromium	mg/L	Report	2.01	Not Needed (d)	Not Needed (d)	Report	2.01
CONVENTIONALS							
Ammonia as N	mg/L	Report	1,030	12.1	2,275	12.1	1,030
Total Phosphorus	μg/L			710	133	710	133
Phenolics (4AAP)	μg/L	Report	20.33	Not Needed (d)	Not Needed (d)	Report	20.33
Chlorides	mg/L			575	107,892	575	107,892
Sulfates	mg/L			667	125,247	667	125,247
TDS	mg/L			4,173	783,068	4,173	783,068
TBOD5	mg/L	Report	4,161			Report	4,161
TSS	mg/L	Report	3,646			Report	3,646
COD	mg/L	Report	30,323			Report	30,323
Oil & Grease	mg/L	Report	1,368			Report	1,368
Sulfide	mg/L	Report	23.1			Report	23.1
Fecal Coliform	col./100mL	200			West Silver	200 (f)	No Limit (e)

- (a) Permit effective from April 1, 1990 to February 28, 1995.
- (b) In accordance with Technical Release OWM-1 Procedure for Developing Water Quality-Based NPDES Permit Limits for Toxic Pollutants, IDEM.
- (c) The most representative and valid limit is the draft permit limit.
 (d) Based upon USEPA procedures for determining whether a WQBEL is needed.
- (e) No limit required by any method used for developing permit limits.
- (f) Only required when sanitary wastewater discharges to the WWTP.
- (g) Shading indicates not applicable.

WQBEL - Water Quality-Based Effluent Limit

TABLE 9-4. SUMMARY OF PROPOSED DAILY MAXIMUM PERMIT LIMITS (g)

PARAMETER	CONC. EXISTING UNITS LIMITS					PROPOSED PERMIT LIMIT (c)	
		CONC.	LOAD (lb/d)	CONC.	LOAD (lb/d)	CONC.	LOAD (lb/d)
METALS			·				
Total Chromium Hex. Chromium	μg/L μg/L	Report Report	68.53 4.48	Not Needed (d) Not Needed (d)	Not Needed (d) Not Needed (d)	Not Needed (d) Not Needed (d)	68.53 4.48
CONVENTIONALS							
Ammonia as N Chlorine (T.R.) Total Phosphorus Phenolics (4AAP) Chlorides Sulfates TDS TBOD5 TSS COD Oil & Grease Sulfide Fecal Coliform pH	mg/L mg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L col./100ml	Report 0.05 Report Report Report Report Report Report Report 400 6.5 - 9.0	2,060 73.01 8,164 5,694 58,427 2,600 51.4	28.1 Not Needed (d) 1,647 Not Needed (d) 1,335 1,550 9,688	5,281 Not Needed (d) 309 Not Needed (d) 250,476 290,766 1,817,916	28.1 0.05 (f) 1,647 Report 1,335 1,550 9,688 Report Report Report Report Report Report Report Report Report Report	2,060 Not Needed (e) 309 73.01 250,476 290,766 1,817,916 8,164 5,694 58,427 2,600 51.4 No Limit (e)

NOTES

(a) Permit effective from April 1, 1990 to February 28, 1995.

(b) In accordance with Technical Release OWM-1 Procedure for Developing Water Quality-Based NPDES Permit Limits for Toxic Pollutants, IDEM.

(c) The most representative and valid limit is the draft permit limit.

(d) Based upon USEPA procedures for determining whether a WQBEL is needed.

(e) No limit required by any method used for developing permit limits.

(f) Only required when sanitary wastewater discharges to the WWTP.

(g) Shading indicates not applicable.

WQBEL - Water Quality-Based Effluent Limit

VOLUME III NPDES PERMIT RENEWAL APPLICATION NPDES PERMIT NO. IN 0000108

PERMIT LIMITS DERIVATION REPORT

Prepared for:

AMOCO OIL COMPANY Whiting Refinery, Indiana

Prepared by:

The ADVENT Group, Inc.

August 1994

	•
	÷
•	
	•
•	

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	Page No.	
	TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES FOREWORD	iii V	
1 -	INTRODUCTION FACILITY DESCRIPTION		
2	OVERVIEW OF THE PROCESS FOR DERIVING LIMITS SUMMARY OF EVALUATION PROCESS		
3	EXISTING PERMIT LIMITS	3-1	
4	HISTORICAL PERFORMANCE	4-1	
5	TECHNOLOGY-BASED PERMIT LIMITS DESCRIPTION OF TECHNOLOGY-BASED LIMITS DERIVATION OF BPT/BAT/BCT EFFLUENT LIMITATIONS	5-1	
6	PROJECTED EFFLUENT QUALITY PURPOSE OF PROJECTED EFFLUENT QUALITY PROCEDURE FOR PROJECTING EFFLUENT QUALITY PROCEDURE IMPLEMENTATION EXAMPLE OF PEQ PROCEDURE IMPLEMENTATION WHOLE EFFLUENT TOXICITY	6-2 6-2 6-5 6-6	
7	WATER QUALITY-BASED EFFLUENT LIMITS	7-1 7-4 7-5 7-7 7-8	
8	METALS RATIO EFFECT	8-1	
9	SUMMARY OF PROPOSED PERMIT LIMITS EXISTING PERMIT LIMITS VERSUS TECHNOLOGY-BASE LIMITS PROPOSED PERMIT LIMITS VERIFICATION OF NON-WQBEL VALUES MARGINS OF SAFETY FINAL PROPOSED PERMIT LIMITS	D 9-1 9-1 9-2 9-2	

TABLE OF CONTENTS (continued)

ATTACHMENT 1	TRAINING MANUAL FOR NPDES PERMIT WRITERS
ATTACHMENT 2	327 IAC 5-2-11.1
ATTACHMENT 3	EVOLUTION OF 327 IAC 2-1-6(j) LAKE MICHIGAN STANDARDS
ATTACHMENT 4	COMPARISON OF 75TH PERCENTILE OF OUTFALL 001 DATABASE
	FOR pH AND TEMPERATURE
ATTACHMENT 5	BIBLIOGRAPHY

LIST OF TABLES


Table No.	<u>Title</u>
3-1	Summary of Existing Permit Discharge Limitations for Outfall 001
4-1	Summary of Maximum Historical Performance Data
5-1	Summary of the Parameters Regulated by Each Type of Technology-Based Effluent Limitations for Existing Sources
5-2	Calculation of Size and Process Factors for BPT/BAT/BCT Calculation (40 CFR 419 Subpart D-Lube Subcategory)
5-3	Calculation of Limits by BPT
5-4	Sum of Products of Each Effluent Limitation Factor
5-5	Effluent Limits Calculated by BAT
6-1	Summary of Indiana Water Quality Standards (327 IAC 2-1-6)
6-2	Determination of the Need for a WQBEL
6-3	Outfall 001 and WLA Biochemical Oxygen Demand (BOD) Data
7-1	Listing of Applicable Numeric Criteria
7-2	Whiting Intake Chloride Monitoring Data Summary (1966-1992)
7-3	Mixing Zone Wasteload Allocation
8-1	Summary of Total to Dissolved Metal Ratios for the Outfall 001 Effluent
9-1	Summary of Existing Monthly Average Permit Limits, Historical Performance, and BPT/BAT/BCT Limits
9-2	Summary of Existing Daily Maximum Permit Limits, Historical Performance, and BPT/BAT/BCT Permit Limits
9-3	Summary of Proposed Monthly Average Permit Limits
9-4	Summary of Proposed Daily Maximum Permit Limits
9-5	Verification of Non-WQBEL Values

LIST OF TABLES

Section	<u>Title</u>
9-6	Summary of Margins of Safety for Proposed Monthly Average Permit Limits Over Other Less Stringent Limits
9-7	Summary of Margins of Safety for Proposed Daily Maximum Permit Limits Over Other Less Stringent Limits
9-8	Summary of Final Proposed Permit Limits

LIST OF FIGURES

Figure No.	<u>Title</u>
1-1	Location Map - Whiting, Indiana
1-2	Area Map - Amoco Oil Company, Whiting Refinery
1-3	Wastewater Treatment Plant - Water Flow Diagram Amoco Oil Company - Whiting Refinery
2-1	Water Quality Based Toxics Control
6-1	Procedure for Determining the Need for a WQBEL

FOREWORD

This report is Volume III of the Amoco Oil Company, Whiting Refinery, application to renew NPDES Permit Number IN 0000108.

This report presents the derivation of proposed limits for the renewed NPDES permit for the treated process wastewater discharged from Outfall 001. The various components of the NPDES permitting process are presented in the context of the effluent characterization data in Volume I, and the Mixing Zone Demonstration report in Volume II of this application. The permit limits proposed in this report are developed based upon an analysis of existing permit limits, technology-based permit limits, and water quality-based effluent limits (WQBELs). For each parameter, the most representative and valid permit limit is proposed as a permit limit.

The introduction in Section 1, is followed, in Section 2, by an overview of how draft permit limits are developed. Section 3 presents the existing permit limits. Section 4 presents a summary of the historical performance of the Outfall 001 effluent over the past three years. Section 5 presents the development of technology-based permit limits. Section 6 presents the projected effluent quality and how it is used to determine the need for the water quality-based effluent limits (WQBELs). The WQBELs are calculated in Section 7. Section 8 discusses the effect of total to dissolved metals ratio data on the permit limits for metals. Finally, Section 9 combines the different methods of developing permit limits into one set of proposed permit limits.

					٠	
	•					
•	•					
					•	
					·	
				•		•
			•			
			·			
	•					
		·				
				•		
					•	-
		•				•
•		•				
	•		•			
				·		
•						
		•				

SECTION 1

INTRODUCTION

As part of the permit renewal application, Amoco Oil Company, Whiting Refinery, (Amoco) is submitting this report to provide an easily understood and scientifically supportable description of the derivation of proposed permit limits for Outfall 001. This report presents the data needed to derive permit limits and the IDEM and USEPA methods by which that process is accomplished, outlines the different permitting components that may be used to derive permit limits, and describes how they are evaluated to develop draft permit limits.

FACILITY DESCRIPTION

The Amoco Whiting Refinery occupies approximately 1,700 acres near the southern end of Lake Michigan as presented in Figures 1-1 and 1-2. The petroleum refinery includes processes such as distillation, catalytic reforming, hydrodesulfurization, catalytic cracking, alkylation, coking, treating, extraction, dewaxing, grease and lube oil production, asphalt production, sulfur recovery and power generation. The refining throughput varies with product demand and other market considerations, but its capacity is well over 400,000 barrels of crude oil per day. Amoco produces a variety of products including jet fuel, gasoline, diesel fuel, heating fuel, lubricating oils, asphalt, coke and waxes. The refinery generates process waters which are continuously treated onsite at an advanced biological wastewater treatment plant (WWTP) as shown schematically in Figure 1-3. Stormwater run-off and recovered groundwater from refinery areas are also treated at the WWTP. The treated effluent is then discharged to Lake Michigan through a National Pollutant Discharge Elimination System (NPDES) permitted outfall (Outfall 001). The refinery withdraws Lake Michigan waters for use in process units and for a once-through cooling process. Outfall 001 is regulated by NPDES

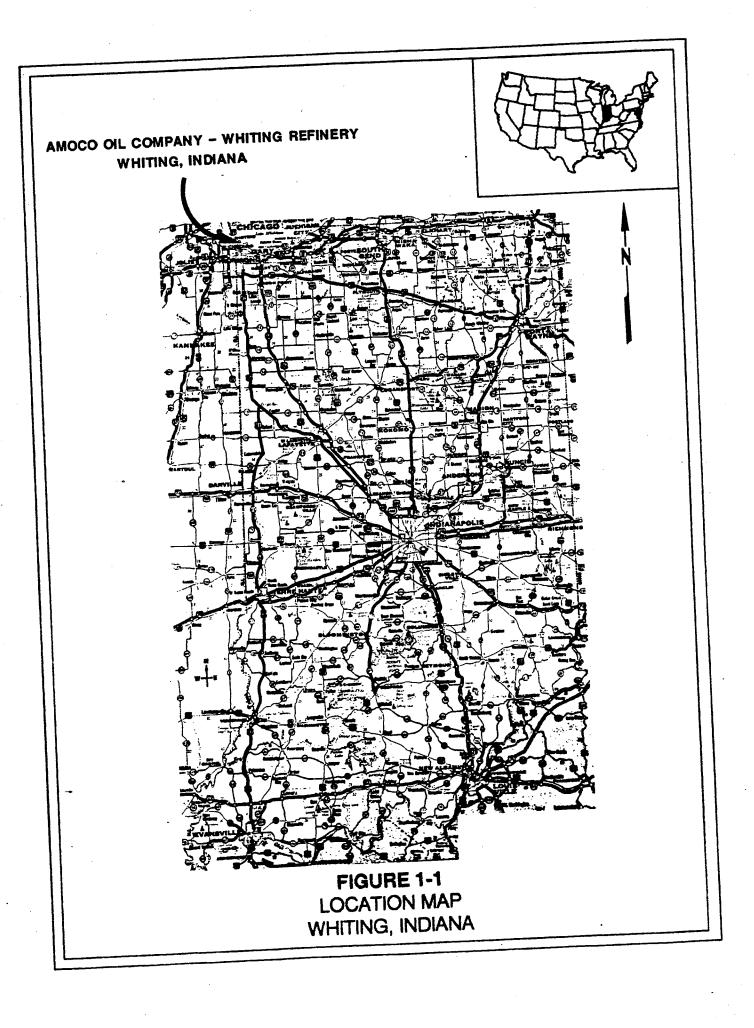
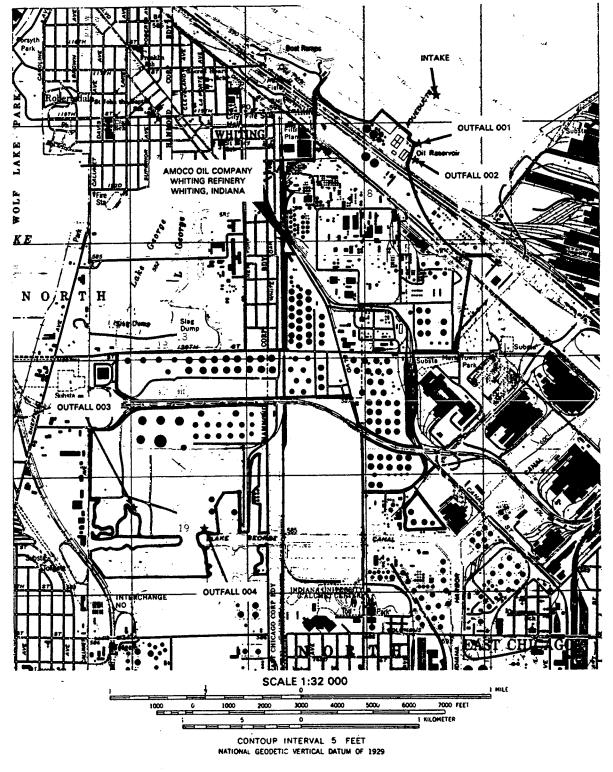
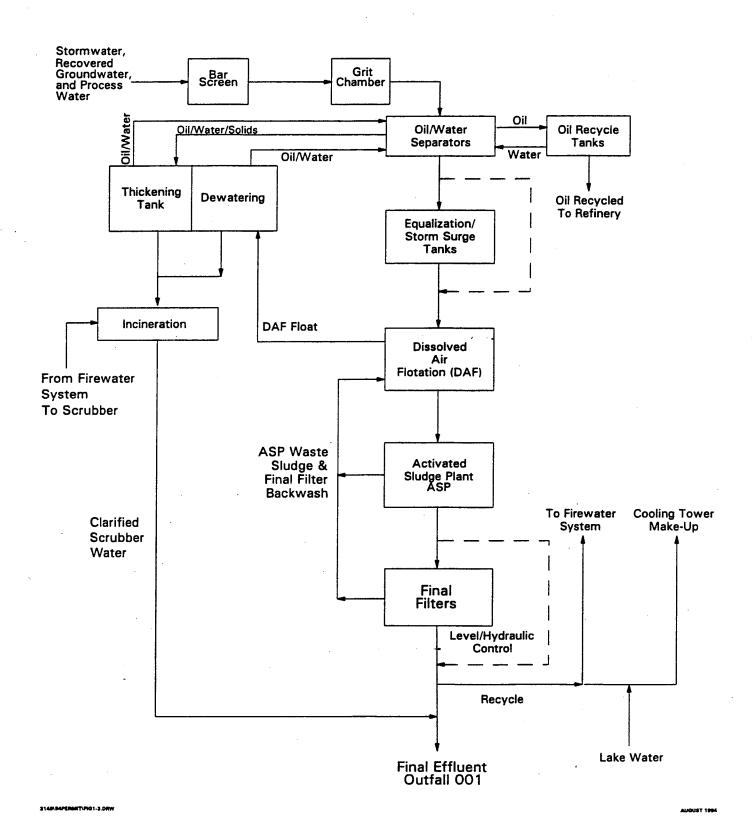




FIGURE 1-2
AREA MAP
AMOCO OIL COMPANY - WHITING REFINERY

SOURCE: USGS 7.5 min. TOPOGRAPHIC MAPS LAKE CALUMET ILL. AND WHITING, IND. 1991

FIGURE 1-3 WASTEWATER TREATMENT PLANT - WATER FLOW DIAGRAM AMOCO OIL COMPANY - WHITING REFINERY

•

SECTION 2

OVERVIEW OF THE PROCESS FOR DERIVING LIMITS

SUMMARY OF EVALUATION PROCESS

The proposed limits for the renewed NPDES permit are based upon an evaluation of:

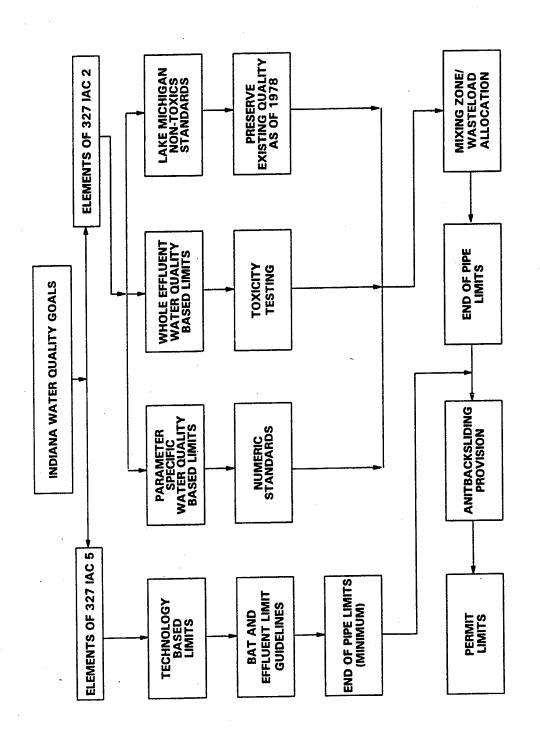
- existing permit limits;
- technology-based permit limits; and,
- water quality-based effluent limits.

Permit limits are developed using each of the above permitting components. The most representative and valid of these limits are selected as the proposed permit limit for each parameter. The derivation of permit limits should also consider:

- historical performance;
- projected effluent quality;
- wasteload allocation for the receiving water; and,
- metals bioavailability.

A summary of the relationship between the different methods used to derive limits is provided in Figure 2-1.

Due to antibacksliding provisions, as established by 327 IAC 5-2-10 (11), the existing permit limits are the starting point for deriving new permit limits. The renewed permit limits cannot be less stringent than existing limits.


The historical performance of the wastewater treatment plant (WWTP) can be evaluated by reviewing the Outfall 001 monthly Discharge Monitoring Reports (DMRs). These data, plus other representative and valid analytical data sets, are included in the effluent characterization data provided in Form 2C of the permit application.

upon the acid soluble metal fraction, whereas permit compliance is determined using total recoverable metal analyses.

The most representative and valid of these permit limits are selected as the proposed permit limit for each parameter. For a final check, this proposed permit limit value is compared to the lowest method detection limit (MDL) for the parameter to determine if the compliance evaluation level needs to be the limit of quantitation (LOQ).

AUCUST 1994

FIGURE 2-1. WATER QUALITY BASED TOXICS CONTROL

REPRESENTATIVE REQUIREMENT FOR THAT PARAMETER. TECHNOLOGY LIMITS MUST BE MET DISCHARGE LIMITS FOR EACH PARAMETER ARE BASED ON THE MOST VALID AND AS A MINIMUM. NOTE:

* *		•				
					٠.	
			* *			
•						
		•		·	•	
	•					
	•					
·						•
٠					•	
•						
	•					
			•			
•						
		•				
	· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·				
•						
		·				
	-					
•	·.					
•					•	
		•			•	
				•		
						!

SECTION 3

EXISTING PERMIT LIMITS

The existing permit limits were established in the permit that became effective on April 1, 1990. A summary of the existing effluent limitations for Outfall 001 is presented in Table 3-1. The existing permit limits are expressed as quantity or loading limits for most parameters, with further reporting requirements for the quality or concentration of the same parameters.

TABLE 3-1. SUMMARY OF EXISTING PERMIT DISCHARGE LIMITATIONS FOR OUTFALL 001 (a)

PARAMETER	QUAP	QUANTITY OR LOADING	DING	QUALITY	QUALITY OR CONCENTRATION (b)	TRATION (b)	MONITORING REQUIREMENTS	QUIREMENTS
	MONTHLY	DAILY	UNITS	MONTHLY	DAILY	UNITS	MEASUREMENT FREQUENCY	SAMPLE TYPE
, mol	Report	Renort (c)	шаа	1	!	1	Daily	Continuous
TBODS	4 161	8 164	vejosel Vejosel	Report	Report	mg/l	5 X Weekly	24 Hr. Comp.
156	3 646	5.694	lbs/dav	Report	Report	mg/l	5 X Weekly	24 Hr. Comp.
	30,323	58.427	lbs/dav	Report	Report	mg/l	3 X Weekly	24 Hr. Comp
Oil and Greace	1 368		lbs/dav	Report	Report	mg/l	5 X Weekly	Grab (d)
Dhonolice (4AAD)	20 33		lbs/dav	Report	Report	mg/l	3 X Weekly	24 Hr. Comp
Ammonia as N	1 030		hs/day	Report	Report	ma/l	5 X Weekly	24 Hr. Comp
Sulfide	23.1		lbs/dav	Report	Report	l/gm	1 X Weekly	24 Hr. Comp.
Total Chromium (e)	23.9		lbs/dav	Report	Report	mg/l	1 X Weekly	24 Hr. Comp
Hex Chromium (e)	202		lbs/day	Report	Report	l/gm	1 X Weekly	24 Hr. Comp
Fecal Coliform (f)	; ! ; !	1		500	400	colonies/100ml	5 X Weekly	Grab
Residual Chlorine (f)	!	1	!	Report	0.05	mg/l	5 X Weekly	Grab
DH	1	1	1	· ¦	6.5 - 9.0	standard units	3 X Weekly	Grab

(a) Permit effective from April 1, 1990 to February 28, 1995.
(b) Begin reporting no later than three months after the effective date of the permit.
(c) Report the daily maximum flow as the highest total daily flow for each monthly reporting period.
(d) Concentration value is the arithmetic mean of three individually analyzed samples collected at equally spaced time intervals during a 24—hour period.
(e) If the total chromium concentration is less than the limitations for hexavalent chromium concentration, then report the hexavalent chromium concentration is less than the limitations for hexavalent chromium concentration. to the total chromium concentration.

(f) For April 1 through October 31, annually, and only when the refinery sanitary sewers are discharging to the WWTP.

.

SECTION 4

HISTORICAL PERFORMANCE

Historical performance data are based upon several years of monitoring; therefore, the large number of samples provides a truly representative characterization of the effluent. This contrasts to some of the effluent characterization data in Form 2C where a limited number of samples are collected during stable operating periods over a period of several months.

Historical performance data for the parameters in the existing permit have been compiled in Table 4-1. This table reports the maximum daily maximum and maximum monthly average loads and concentrations reported on the monthly Discharge Monitoring Reports (DMRs). In accordance with the instructions for Form 2C of the permit application, the DMR data are for the period April 1991 to April 1994.

The historical performance data should be viewed in the context of the refinery production rate as expressed by the refinery crude oil throughput or feedstock. The technology-based limits for the existing permit were based on a crude oil throughput of 324,900 barrels per day. The refinery's maximum monthly average throughput is currently 410,000 barrels of crude oil per day.

TABLE 4-1. SUMMARY OF MAXIMUM HISTORICAL PERFORMANCE DATA (a)

PARAMETERS	MAXIMUM DAIL	(d) MUMIXAM Y.	MAXIMUM MONT	HLY AVERAGE (b)
	CONCENTRATION (mg/L)	LOAD (lbs/day)	CONCENTRATION (mg/L)	LOAD (lbs/day)
TBOD	29	3,580	5.8	721
TSS	71	4,904 (c)	24.6	2,059
COD	135	18,515	67.2	7,973
Oil & Grease	12.8	1,594	3.9	463
Phenolics	. 0.09	17.9	0.016	3.11
NH3-N	13.0	1,446	4.12	551
Sulfide	0.12	14.3	0.068	6.7
Total Chromium	0.03	5.3	0.015	2.4
Hex Chromium	0.007	1.23	0.003	0.56
Total Selenium	0.045	5.3	No Permit Limit	No Permit Limit
Fecal Coliform	No Data (d)	No Permit Limit	No Data (d)	No Permit Limit
Total Residual Chlorine	No Data (d)	No Permit Limit	No Data (d)	No Permit Limit
рН	8.1 standard units	No Permit Limit	7.9 standard units	No Permit Limit

NOTES:

(a) Source is the data reported in Form 2C of the permit application.

(b) Concentrations and loads are independent of each other, i.e., do not necessarily occur on the same date.

(d) No data collected since sanitary wastewater did not discharge to the WWTP.

⁽c) Highest value (10,553 lbs/day on 08/31/93) is not included in the data set since it occurred due to successive rainfall events related to the extreme Midwest flooding of 1993.

SECTION 5

TECHNOLOGY-BASED PERMIT LIMITS

DESCRIPTION OF TECHNOLOGY-BASED LIMITS

Technology-based permit limits for this effluent are developed in accordance with the EPA Effluent Guidelines and Standards for Petroleum and Petroleum Refining (40 CFR Part 419). The petroleum refining source category is divided into five subcategories. Based upon the process configuration of the Whiting Refinery, the technology-based effluent limitations for the Outfall 001 effluent are developed under Subpart D - Lube Subcategory.

40 CFR 419 Subpart D specifies three types of effluent limitations for existing point sources:

- BPT-Best Practicable Control Technology Currently Available (40 CFR 419.42);
- BAT-Best Available Technology Economically Achievable (40 CFR 419.43); and,
- BCT-Best Conventional Pollutant Control Technology (40 CFR 419.44).

A summary of the parameters applicable to these effluent limits is provided in Table 5-1.

The USEPA October 1982 "Development Document for Effluent Limitations Guidelines

New Source Performance Standards and Pretreatment Standards for the Petroleum Refining

Point Source Category" discusses the three types of technology-based limits:

"Best Available Control Technology Economically Achievable (BAT) is equivalent to the existing Best Practicable Technology Currently Available (BPT) level of control. BAT technology, which is the same as BPT, includes in-plant control and end-of-pipe treatment . . . BPT end-of-pipe treatment includes flow equalization, initial oil and solids removal (API separator or baffle plate separator), further oil and solids removal (clarifier or dissolved air flotation), biological treatment, and filtration or other final "polishing" steps. The effluent limitations for BAT are the same as those for BPT because the BAT flow model and subcategorization scheme are the same as those for BPT."

developing BPT limits. For each parameter the BAT limits are determined using limits based upon the throughput for each of the five process groupings in 40 CFR 419 Appendix A:

- Crude Processes;
- Cracking and Coking Processes;
- Asphalt Processes;
- Lube Processes; and,
- Reforming and Alkylation Processes.

No size or process factors are applied. The calculation of the throughput for each of the process groups is shown in Table 5-4. The calculation of the BAT effluent limits for phenolic compounds [4AAP], total chromium, and hexavalent chromium is presented in Table 5-5.

The crude oil throughput or feedstock used in the above calculations is 410,000 barrels per day. This is the maximum monthly average production for the Whiting Refinery for the period 1991 to 1994.

TABLE 5-1. SUMMARY OF THE PARAMETERS REGULATED BY EACH TYPE OF TECHNOLOGY-BASED EFFLUENT LIMITATIONS FOR EXISTING SOURCES (a)

PARAMETER	EFFL	UENT LIMITATION	IS TYPE
	ВРТ	BAT	вст
BOD5	x		x
TSS	×		x
COD	×	x	
Oil and Grease	×		x
Ammonia as N	×	x	
Sulfide	· x	x	
Phenolic Compounds [4AAP]	x	x	
Total Chromium	x	x	
Hexavalent Chromium	. X	x	
рН	x		X

NOTES:

(a) 40 CFR Part 419 Subpart D

BPT – Best Practicable Control Technology Currently Available BAT – Best Available Technology Economically Achievable

BCT - Best Conventional Pollutant Control Technology

TABLE 5-2. CALCULATION OF SIZE AND PROCESS FACTORS FOR BPT/BAT/BCT CALCULATIONS (40 CFR 419 SUBPART D - LUBE SUBCATEGORY)

PROCESS CATEGORY	PROCESSES INCLUDED	CAPACITY (1000 bbl per day)	CAPACITY RELATIVE TO THROUGHPUT	WEIGHTING FACTOR	PROCESSING CONFIGURATION
Crude	Atmospheric Crude Distillation	410.0	1.000		
Ciude	Vacum Distillation	212.0	0.517		*
	Desalting Crude	410.0	1.000		
		1032.0	2.517	1	2.517
Cracking & Coking	Fluid Catalytic Cracking	157.0	0.383		
Cracking a Coking	Delayed Coking	28.6	0.070		
	Domy ou doming	185.6	0.453	6	2.71
A b b	Asphalt Production	60.0	0.146	٠	
Asphalt	Aspriale Foundation	60.0	0.146	12	1.75
	Hydrofinishing	3.72	0.009		
Lube	White Oil Manufacture	1.08	0.003		
	Wax Fractionating	20.7	0.050		
•	MEK Dewaxing	2.8	0.007		
	Wax Sweating	7.2	0.018		
	NMP Extraction	12.7	0.031		
		48.2	0.118	13	1.53
				<u> </u>	8.52

(1) SIZE FACTOR

Based on the table in 40 CFR 419.42 (b) (1), 419.43 (b) (1), or 419.44 (b) (1)

1,000 BBL OF FEEDSTOCK	SIZE
PER STREAM DAY	FACTOR
200.0 or greater	1.19

(2) PROCESS FACTOR

Based on the table in 40 CFR 419.42 (b) (2), 419.43 (b) (2), or 419.44 (b) (2)

PROCESS CONFIGURATION FACTOR	SIZE FACTOR
8.5 to 8.99	1.19

TABLE 5-3. CALCULATION OF LIMITS BY BPT (a)

	PARAMETERS	TYPE OF EFFLUENT	DAILY	MONTHLY	SIZE	PROCESS FACTOR	1000 BBL FEED	EFFLUENT LIMITATIONS	MITATIONS
BPT, BCT 17.9		LIMITATION	(lbs/1000)	(lbs/1000)				DAILY MAXIMUM (lbs/day)	. MONTHLY AVERAGE (lbs/day)
BPT, BGT 12.5 6 BPT, BAT 5.7 6 BPT, BAT 8.3 6.1 Cs BPT, BAT 0.118 0.1 Inom BPT, BAT 0.273 0.1 Inom BPT, BAT 0.024 0.0	ō	BPT, BCT	17.9	0.0	1.19	1.19	410	10,393	5,283
BPT, BAT 127 6 BPT, BAT 8.3 BPT, BAT 0.118 0.0 Incom BPT, BAT 0.273 0.0 Incom BPT, BAT 0.024 0.0	S	BPT, BCT	12.5	8.0	1.19	1.19	410	7,258	4,645
BPT, BAT 8.3 6.4 6	٩	BPT, BAT	127	66.0	1.19	1.19	410	73,736	38,320
BPT, BAT 0.118 0.0 S BPT, BAT 0.133 0.1 Irom BPT, BAT 0.024 0.0	(5 at	BPT, BCT	5.7	3.0	1.19	1.19	410	3,309	1,742
cs BPT, BAT 0.118 nrom BPT, BAT 0.273 nom BPT, BAT 0.024	N - 6	BPT, BAT	8.3	3.8	1.19	1.19	410	4,819	2,208
bm BPT, BAT 0.273 m BPT, BAT 0.024	fide	BPT, BAT	0.118	0.053	1.19	1.19	410	68.5	30.8
BPT, BAT 0.0273	enolics	BPT,BAT	0.133	0.065	1.19	1.19	410	77.2	37.7
BPT, BAT 0.024	tal Chrom	BPT, BAT	0.273	0.160	1.19	1.19	410	158.5	92.9
	×Chrom	BPT, BAT	0.024	0.011	1.19	1.19	4	13.93	6.39
pH BPT, BCT (b) (b)		вет, вст	(q)	(q)	(q)	(q)	(Q)	6.0 - 9.0	6.0 - 9.0

NOTES: (a) Based on 40 CFR 419.42 (b) pH limit is within the range 6.0 to 9.0 s.u.

L:\DATA\3149\TCOST\16-3.WK1

TABLE 5-4. SUM OF PRODUCTS OF EACH EFFLUENT LIMITATION FACTOR (a)

PROCESS CATEGORY	PROCESSES INCLUDED	MAXIMUM MONTHLY AVERAGE CAPACITY (1000 bbl / day)
Crude	Atmospheric Crude Distillation Vacuum Distillation Desalting Crude	410.0 212.0 <u>410.0</u> 1032.0
Cracking & Coking	Fluid Catalytic Cracking Delayed Coking	157.0 <u>28.6</u> 185.6
Asphalt	Asphalt Production	60.0 60.0
Lube	Hydrofinishing White Oil Manufacture Wax Fractionating MEK Dewaxing Wax Sweating NMP Extraction	3.7 1.1 20.7 2.8 7.2 12.7 48.2
Reforming & Alkylation	H2SO4 Alkylation Reforming Hydrotreating	31.0 90.0 <u>188.3</u> 309.3

NOTES:

(a) Based on 419.43 (c) (i)

TABLE 5-5. EFFLUENT LIMITS CALCULATED BY BAT (a)

PARAMETER	PROCESSES	DAILY	MONTHLY	1000 BSD CAPACITY	EFFLUENT LIMITS	LIMITS
	-	(lbs/1000)	(lbs/1000)	(lbs/1000)	DAILY MAXIMUM (Ibs/day)	MONTHLY AVERAGE (lbs/day)
- Phenolics Compounds	Crude	0.013	0.003	1032.0	13.42	3.10
	Cracking & Coking	0.147	90.036	185.6	27.28	6.68
	Asphalt	0.079	0.019	0.09	4.74	1.14
	Lube	0.369	0.09	48.2	17.79	4.34
	Reform & Alkylation	0.132	0.032	309.3	40.83	06'6
					104.05	25.15
- Total Chromium	Crude	0.011	0.004	1032.0	11.35	4.13
	Cracking & Coking	0.119	0.041	185.6	22.09	19.7
	Asphalt	0.064	0.022	0.09	3.84	1.32
	Lube	0.299	0.104	48.2	14.41	5.01
	Reform & Alkylation	0.107	0.037	309.3	33.10	11.44
				٠.	84.79	29.51
- Hexavalent Chromium	Crude	0.0007	0.0003	1032.0	0.72	0.31
	Cracking & Coking	0.0076	0.0034	185.6	1.4.1	0.63
	Asphalt	0.0041	0.0019	0:09	0.25	0.11
	Lube	0.0192	0.0087	48.2	0.93	0.42
	Reform & Alkylation	6900.0	0.0031	309.3	2.13	96.0
					5.44	2.43

NOTES: (a) Based on 40 CFR 419.43 (c) (i)

•	,				•				•
•									
								•	
		•							
				•					
	1								
		•							
		,							
							•		
	. •	•							
				••					
								•	
				4			•		
	•								
		•				•			
			•				•		
						•			
			•						
	•			•			•		
•									
••	•								
			•						

PARAMETER	CONC.	MONITORING DATA	NG DATA			XW	ING ZONE W	MIXING ZONE WASTELOAD ALLOCATION	LOCATION				<u>. </u>	ROPOSED F	PROPOSED PERMIT LIMITS	go
		DAILY	AVERAGE		4-DAY BACKGROUND	AAC	ACUTE	ACUTE	ACUTE	CHRONIC	CHRONIC	CHRONIC	CONCENTRATION	TRATION	LOAD (Ib/dey)	b/dey)
				STANDARD			<u> </u>	MAXIMUM	AVERAGE		MAXIMUM	AVERAGE	DALY	DAILY MONTHLY	DAILY	MONTHLY
ε	8	· 6	E	9	9	6	9	6	(19	(11)	(12)	(13)	(14)	(15)	(16)	(17)
CHROMIUM (III)		& '	ō.	278.5	-	2,314.2	126,694.6	126,694.6	54,478.7	20,886.8		14,748.1		4		2,767
PHENOLICS (d)	축축 물	90	0.0	1.42	0.17	2	Cott			97.7	160.1	12.1	28.1	69.0	5,281	13

TABLE 9-5. VERFICATION OF NON-WOBEL VALUES (4)

(a) ZDIM Dispersion = TMZ Dispersion =

(b) Flow = 22.5 MGD (IDEM Wasteload Allocation, September 1992) (c) The summer 4-day CCC standard is presented since summer is the limiting season. (d) Data for 1/91 to 3/94.

Column (1): Peremeters where i) a load limft was calculated by a method other than the WGBEL process and, ii) numeric IWGS criteria exist.

Column (3): Daily maximum is the maximum for the monitoring database.

Column (3): Daily maximum is the maximum for the monitoring database.

Column (3): Bark of the monitoring database.

Column (3): Bark of the monitoring database.

Column (5): About the monitoring database.

Column (5): Bark of the monitoring database.

Column (5): Bark of the monitoring database.

Column (5): About the monitoring database.

Column (5): About the monitoring database accept for phosphorous which is based on USEPA STORIET data (1985 to 1992) for the Whiting Intake.

Column (5): About the will also accept the monitoring database and the Will also accept the monitoring database and the will also accept the monitoring the will also accept t

0.708 Chronic monthly average = chronic WLA *

Column (14): Concentration permit limits are equal to the lesser of acute delity meximum and chronic daily maximum. Column (15): Concentration permit limits are equal to the lesser of acute monthly average and chronic monthly average. Columns (16) and (17): Load permit limits = concentration * WLA flow * 8.34

TABLE 9-6. SUMMARY OF MARGINS OF SAFETY FOR PROPOSED MONTHLY AVERAGE PERMIT LIMITS OVER OTHER LESS STRINGENT LIMITS (g)

PARAMETER	PROPOS PERMIT L	41	EXISTING F LIMITS		BPT/BAT LIMITS		WQBEL I	
	LOAD	BASIS	LOAD	MARGIN OF SAFETY (%)	LOAD	MARGIN OF SAFETY (%)	LOAD	MARGIN OF SAFETY (%)
METALS Total Chromium Hex. Chromium CONVENTIONALS	23.9 2.01	Current Permit Current Permit	23.9 2.01	0	92.9 6.39	74% 69%	Not Needed (e) Not Needed (e)	
Ammonia as N	1,030	Current Permit	1,030	m	2,206	53%	1,783 133	429
Total Phosphorus Phenolics (4AAP) Chlorides Sulfates	133 13 107, 89 2 125,247	WQBEL WQBEL WQBEL WQBEL	20.33	36%	37.7	66%	13 107,892 125,247 783,088	0 0
TDS TBOD5 TSS COD Oil & Grease Sulfide	783,068 4,161 3,646 30,323 1,368 23.1	WQBEL Current Permit Current Permit Current Permit Current Permit Current Permit	4,161 3,646 30,323 1,368 23.1	0000	5,283 4,645 38,320 1,742 30.8	21% 22% 21% 21% 25%	,	

NOTES

(a) The most representative and valid limit is the draft permit limit.

(b) Permit effective from April 1, 1990 to February 28, 1995.

(c) In accordance with 40 CFR Part 419 Subpart D. (d) In accordance with Technical Release OWM –1 Procedure for Developing Water Quality –Based NPDES Permit Limits for Toxic Pollutants, IDEM.

(e) Based upon USEPA procedures for determining whether a WQBEL is needed.

(7) Not applicable since this is the basis for the preliminary possible draft permit limt.

(g) Example for ammonia possible draft limit relative to a WQBEL permit limit: Margin of safety = (1,783 - 1,030) / 1,783 * 100 = 42 %

WQBEL - Water Quality-Based Effluent Limit

TABLE 9-7. SUMMARY OF MARGINS OF SAFETY FOR PROPOSED DAILY MAXIMUM PERMIT LIMITS OVER OTHER LESS STRINGENT LIMITS (h)

PARAMETER	PROPOSED PERMIT LIMIT (a)		EXISTING PERMIT LIMITS (b)		BPT/BAT/BCT PERMIT LIMITS (c)		WQBEL PERMIT LIMITS (d)	
	LOAD (Ib/d)	BASIS	LOAD (lb/d)	MARGIN OF SAFETY (%)	LOAD (lb/d)	MARGIN OF SAFETY (%)	LOAD (lb/d)	MARGIN OF SAFETY (%)
METALS Total Chromium Hex. Chromium	68.53 4.48	Current Permit Current Permit	68.53 4.48	(g) (g)	158.5 13.93	57% 68%	Not Needed (e) Not Needed (e)	
CONVENTIONALS Ammonia as N Total Phosphorus Phenolics (4AAP) Chlorides	2,050 309 30 250,476 290,768	Current Permit WQBEL WQBEL WQBEL WQBEL	2,060 73.01	(g) 59%	4,819 77.2	57% 61%	4,128 309 30 250,476 290,766 1,817,916	50 ((() ()
Sulfates TDS TBOD5 TSS COD Oil & Grease Sulfide	1,817,916 8,164 5,694 58,427 2,600	WQBEL Current Permit Current Permit Current Permit Current Permit	5,694 58,427 2,600	(a) (b) (c) (d)	10,393 7,258 73,736 3,309 68.5			

NOTES:

- (a) The most representative and valid limit is the draft permit limit.
- (b) Permit effective from April 1, 1990 to February 28, 1995.
 (c) In accordance with 40 CFR Part 419 Subpart D. (d) In accordance with 90 CFR Fax 419 Suppart D.

 (d) In accordance with Technical Release OWM-1 Procedure for Developing Water Quality-Based NPDES Permit Limits for Toxic Pollutants, IDEM.

 (e) Based upon USEPA procedures for determining whether a WQBEL is needed.
- (7) No limit required by any method used for developing permit limits.
- (g) Not applicable since this is the basis for the preliminary possible draft permit limit.
 (h) Example for ammonia possible draft limit relative to a WQBEL permit limit: Margin of safety = (4,128 - 2,060) / 4,128 * 100 = 50 %

WQBEL - Water Quality-Based Effluent Limit

ATTACHMENT 1

TRAINING MANUAL FOR NPDES PERMIT WRITERS

